25 research outputs found

    Effect of Carnitine and herbal mixture extract on obesity induced by high fat diet in rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Obesity-associated type 2 diabetes is rapidly increasing throughout the world. It is generally recognized that natural products with a long history of safety can modulate obesity.</p> <p>Aim</p> <p>To investigate the development of obesity in response to a high fat diet (HFD) and to estimate the effect of L-carnitine and an Egyptian Herbal mixture formulation (HMF) (consisting of T. chebula, Senae, rhubarb, black cumin, aniseed, fennel and licorice) on bodyweight, food intake, lipid profiles, renal, hepatic, cardiac function markers, lipid Peroxidation, and the glucose and insulin levels in blood and liver tissue in rats.</p> <p>Method</p> <p>White male albino rats weighing 80-90 gm, 60 days old. 10 rats were fed a normal basal diet (Cr), 30 rats fed a high-fat diet (HFD) for 14 weeks during the entire study. Rats of the HFD group were equally divided into 3 subgroups each one include 10 rats. The first group received HFD with no supplement (HFD), the 2<sup>nd </sup>group HFD+L-carnitine and the third group received HFD+HMF. Carnitine and HMF were administered at 10<sup>th </sup>week (start time for treatments) for 4 weeks.</p> <p>Body weight, lipid profile & renal function (urea, uric acid creatinine) ALT & AST activities, cardiac markers, (LDH, C.K-NAC and MB) the oxidative stress marker reduced glutathione (GSH), and Malondialdehyde (MDA) catalase activity, in addition to glucose, insulin, and insulin resistance in serum & tissues were analyzed.</p> <p>Results</p> <p>Data showed that feeding HFD diet significantly increased final body weight, triglycerides (TG), total cholesterol, & LDL concentration compared with controls, while significantly decreasing HDL; meanwhile treatment with L-carnitine, or HMF significantly normalized the lipid profile.</p> <p>Serum ALT, urea, uric acid, creatinine, LDH, CK-NAC, CK-MB were significantly higher in the high fat group compared with normal controls; and administration of L-carnitine or herbal extract significantly lessened the effect of the HFD. Hyperglycemia, hyperinsulinemia, and high insulin resistance (IR) significantly increased in HFD in comparison with the control group. The treatment with L-carnitine or HMF improved the condition. HFD elevated hepatic MDA and lipid peroxidation associated with reduction in hepatic GSH and catalase activity; whereas administration of L-carnitine or herbal extract significantly ameliorated these hepatic alterations.</p> <p>Conclusion</p> <p>HFD induced obesity associated with a disturbed lipid profile, defective antioxidant stability, and high values of IR parameters; this may have implications for the progress of obesity related problems. Treatment with L-carnitine, or HMF extract improved obesity and its associated metabolic problems in different degrees. Also HMF has antioxidant, hypolipidaemic insulin sensitizing effects. Moreover HMF might be a safe combination on the organs whose functions were examined, as a way to surmount the obesity state; and it has a distinct anti-obesity effect.</p

    In vitro and in vivo isolation ofLeishmania tropica from Saudi Arabia

    No full text

    Leveraging a health information exchange for analyses of COVID-19 outcomes including an example application using smoking history and mortality.

    No full text
    Understanding sociodemographic, behavioral, clinical, and laboratory risk factors in patients diagnosed with COVID-19 is critically important, and requires building large and diverse COVID-19 cohorts with both retrospective information and prospective follow-up. A large Health Information Exchange (HIE) in Southeast Texas, which assembles and shares electronic health information among providers to facilitate patient care, was leveraged to identify COVID-19 patients, create a cohort, and identify risk factors for both favorable and unfavorable outcomes. The initial sample consists of 8,874 COVID-19 patients ascertained from the pandemic's onset to June 12th, 2020 and was created for the analyses shown here. We gathered demographic, lifestyle, laboratory, and clinical data from patient's encounters across the healthcare system. Tobacco use history was examined as a potential risk factor for COVID-19 fatality along with age, gender, race/ethnicity, body mass index (BMI), and number of comorbidities. Of the 8,874 patients included in the cohort, 475 died from COVID-19. Of the 5,356 patients who had information on history of tobacco use, over 26% were current or former tobacco users. Multivariable logistic regression showed that the odds of COVID-19 fatality increased among those who were older (odds ratio = 1.07, 95% CI 1.06, 1.08), male (1.91, 95% CI 1.58, 2.31), and had a history of tobacco use (2.45, 95% CI 1.93, 3.11). History of tobacco use remained significantly associated (1.65, 95% CI 1.27, 2.13) with COVID-19 fatality after adjusting for age, gender, and race/ethnicity. This effort demonstrates the impact of having an HIE to rapidly identify a cohort, aggregate sociodemographic, behavioral, clinical and laboratory data across disparate healthcare providers electronic health record (HER) systems, and follow the cohort over time. These HIE capabilities enable clinical specialists and epidemiologists to conduct outcomes analyses during the current COVID-19 pandemic and beyond. Tobacco use appears to be an important risk factor for COVID-19 related death
    corecore